41 research outputs found

    Using the Balanced Scorecard for Ranch Planning and Management:Setting Strategy and Measuring Performance

    Get PDF
    The key to business success—whether operating a ranch or a Fortune 500 company—lies in management and planning. It’s the ability to have foresight, to carefully evaluate and choose appropriate new concepts and technologies, and to implement a well thought- out plan that complements all aspects of the business. The highly-respected former CEO and chairman of General Electric Jack Welch put it this way: Good business leaders create a vision, articulate the vision, passionately own the vision, and relentlessly drive it to completion. How does that description apply to you? Are you a visionary business leader for your ranch enterprise? Or can you become one? This manual introduces the “Balanced Scorecard” developed by Dr. Robert Kaplan of the Harvard Business School and Dr. David Norton. The duo authored the book The Balanced Scorecard: Translating Strategy Into Action, and the scorecard format has been used by thousands of global companies and small businesses since the early 1990s when it was initially developed. While this concept may be relatively new to the ranching community, adopters of this approach to management include corporate icons like General Electric, DuPont, Ford Motor Company, IBM, and Walt Disney World. Using the scorecard, a manager can clearly see the things that need to be measured to “balance” different competing parts of the ranch. For example, rather than analyze financial records alone—which are only capable of telling of past events—this approach also takes into account things such as customer relationships, ranch processes, and investment in family members and employees’ learning and growth— all of which can have an impact on future business success. Central to the effectiveness of the Balanced Scorecard is viewing the business (your ranch) from these perspectives and then developing strategies and evaluating outcomes relative to each of those perspectives. By doing so, you can build a stronger base for your future sustainability. To that end, this manual offers a step-by step guide for the ranching industry to adopt the Balanced Scorecard and move toward managing for ranch business success

    Strategic and Scenario Planning in Ranching: Managing Risk in Dynamic Times

    Get PDF
    ContentSteps Toward Success Stage 1: Charting the Course: Creating the Vision Step 1: Assess current situation and inventory of ranch resources Step 2: Conduct SWOT analysis Step 3: Establish a vision for the ranch business Stage 2: Determining Strategies to Achieve the Ranch’s Vision Step 4: GAP analysis Step 5: Alternative strategies to close the gap Stage 3: Scenario Planning for the Ranch Step 6: Describe multiple scenarios Step 7: Select and evaluate the most-probable Scenarios Stage 4: Merging Strategies and Scenario Planning Step 8: Determine strategies with the highest likelihood of success Stage 5: Putting the Plan Into Action and Measuring Success Step 9: Implementation of the strategic plan Step 10: Monitor performance with the Balanced Scorecard Conclusionase for Strategic Planning: Consider ethanol’s impact Appendi

    Spaceflight-Induced Cardiovascular Changes and Recovery During NASA's Functional Task Test

    Get PDF
    Microgravity-induced physiological changes could impair a crewmember s performance upon return to a gravity environment. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in mission-critical tasks. The Recovery from Fall/Stand Test (RFST) simulates one such task, measuring the ability to recover from a prone position and the cardiovascular response to orthostasis. The purpose of this study was to evaluate spaceflight-induced cardiovascular changes during the FTT. METHODS: Five astronauts participated in the FTT before 10-15 day missions, on landing day (R+0), and one (R+1), six (R+6) and thirty (R+30) days after landing. The RFST consisted of a 2-minute prone rest followed by a 3-minute stand during which heart rate (HR, Holter) and continuous blood pressure (BP, Finometer) were measured. Spectral heart rate variability (HRV) was calculated during the RFST to approximate autonomic function. Statistical analysis was performed with two-factor repeated measures ANOVA. RESULTS: During RFST, HR was higher on R+0 than preflight (p<0.004). This increase in HR persisted on R+1 and R+6 during the stand portion of RFST (p<0.026). BP was well-regulated on all test days. Parasympathetic activity was diminished on R+0 (p=0.035). Sympathovagal balance tended to be affected by spaceflight (main effect, p=0.072), appearing to be slightly elevated during postflight RFST except on R+30. Additionally, analysis of HR during the functional tasks yielded a higher HR on R+0 than preflight during 8 of 11 tasks analyzed, where all tasks had HR return to preflight values by R+30 (p<0.05). CONCLUSION: Spaceflight causes an increase in HR, decrease in parasympathetic activity, and increase in sympathovagal balance, which we confirmed during RFST. These spaceflight-induced changes seen in the RFST, along with the increased postflight HR in most functional tasks, can be used to assess functional performance after short-duration spaceflight

    Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure

    Get PDF
    A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this fundamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise titration assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    Get PDF
    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight

    Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Get PDF
    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance
    corecore